MAX materials and MXene materials are new two-dimensional materials which have attracted much attention lately, with excellent physical, chemical, and mechanical properties, and possess shown broad application prospects in lots of fields. This is a comprehensive introduction to the properties, applications, and development trends of MAX and MXene materials.
Precisely What is MAX material?
MAX phase material is a layered carbon nitride inorganic non-metallic material comprising M, A, X elements on the periodic table, collectively referred to as “MAX phase”. M represents transition metal elements, including titanium, zirconium, hafnium, etc., A represents the main group elements, like aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer is made up of M, A, X, the 3 components of the alternating composition arrangement, with hexagonal lattice structure. Because of the electrical conductivity of metal and high strength, high-temperature resistance and corrosion resistance of structural ceramics, they may be widely used in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding and other fields.
Properties of MAX material
MAX material is really a new type of layered carbon nitride inorganic non-metallic material using the conductive and thermal conductive qualities of metal, comprising three elements with the molecular formula of Mn 1AXn (n=1, 2 or 3), where M means the transition metal, A refers back to the main-group elements, and X means the aspects of C and N. The MXene material is actually a graphene-like structure obtained from the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAX phases are novel two-dimensional nanomaterials made from carbon, nitrogen, oxygen, and halogens.
Uses of MAX materials
(1) Structural materials: the excellent physical properties of MAX materials make sure they are have a wide range of applications in structural materials. As an example, Ti3SiC2 is a common MAX material with good high-temperature performance and oxidation resistance, which can be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials will also be used in functional materials. As an example, some MAX materials have good electromagnetic shielding properties and conductivity and can be used to manufacture electromagnetic shielding covers, coatings, etc. Additionally, some MAX materials likewise have better photocatalytic properties, and electrochemical properties can be utilized in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which is often used in energy materials. For example, K4(MP4)(P4) is one of the MAX materials with high ionic conductivity and electrochemical activity, which bring a raw material to manufacture solid-state electrolyte materials and electrochemical energy storage devices.
Exactly What are MXene materials?
MXene materials certainly are a new type of two-dimensional nanomaterials obtained by MAX phase treatment, just like the structure of graphene. The surface of MXene materials can connect with more functional atoms and molecules, as well as a high specific surface area, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation methods of MXene materials usually are the etching management of the MAX phase and also the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties such as electrical conductivity, magnetism and optics may be realized.
Properties of MXene materials
MXene materials really are a new form of two-dimensional transition metal carbide or nitride materials consisting of metal and carbon or nitrogen elements. These materials have excellent physical properties, like high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., along with good chemical stability and the opportunity to maintain high strength and stability at high temperatures.
Applications of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and therefore are commonly used in energy storage and conversion. For example, MXene materials can be used as electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. Additionally, MXene materials may also be used as catalysts in fuel cells to enhance the action and stability of the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity may be used in electromagnetic protection. For example, MXene materials can be used as electromagnetic shielding coatings, electromagnetic shielding cloth, as well as other applications in electronic products and personal protection, enhancing the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and may be used in sensing and detection. For example, MXene materials can be used gas sensors in environmental monitoring, which could realize high sensitivity and selectivity detection of gases. Additionally, MXene materials can also be used as biosensors in medical diagnostics along with other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. Down the road, using the continuous progress of technology and science and the improving demand for services for applications, the preparation technology, performance optimization, and application areas of MAX and MXene materials is going to be further expanded and improved. The following aspects can become the focus of future research and development direction:
Preparation technology: MAX and MXene materials are mostly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. In the future, new preparation technologies and techniques may be further explored to understand a much more efficient, energy-saving and environmentally friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials has already been high, but there is still room for further optimization. Down the road, the composition, structure, surface treatment as well as other aspects of the content may be studied and improved in depth to improve the material’s performance and stability.
Application areas: MAX materials and MXene materials have been widely used in lots of fields, but you can still find many potential application areas to become explored. Later on, they can be further expanded, including in artificial intelligence, biomedicine, environmental protection along with other fields.
In conclusion, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show a wide application prospect in many fields. Using the continuous progress of science and technology and the continuous improvement of application demand, the preparation technology, performance optimization and application regions of MAX and MXene materials will likely be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.